Beyond the staple motif: a new order at the thiolate-gold interface.
نویسندگان
چکیده
Staple motifs in the form of -RS(AuSR)x- (x = 1, 2, 3, etc.) are the most common structural feature at the interface of the thiolate-protected gold nanoclusters, Aun(SR)m. However, the recently solved structure of Au92(SR)44, in which the facets of the Au84 core are protected mainly by the bridging thiolates, challenges the staple hypothesis. Herein, we explore the surface sensitivity of the thiolate-gold interface from first principles density functional theory. We find that the interfacial structures of thiolates on gold are surface sensitive: while a staple motif (such as -RS-Au-SR-) is preferred on Au(111), a bridging motif (-RS-) is preferred on Au(100) and Au(110). We show that this surface sensitivity is closely related to the coordination number of the surface Au atom on the different surfaces. We further confirm the preference of the bridging motif for self-assembled monolayers of two different ligands (methylthiolate and 4-tert-butylbenzenethiolate) on Au(100). With this surface sensitivity, we categorize the structure-known Aun(SR)m clusters into three groups: (1) no bridging; (2) ambiguous bridging; (3) distinct bridging. We further employ the surface sensitivity of the thiolate-Au interface to predict the protecting motifs of face-centered cubic (fcc) gold nanoparticles of different shapes. Our study provides a unifying view of the Aun(SR)m structures with guidelines for structure predictions for larger Aun(SR)m clusters of a fcc core.
منابع مشابه
Oxidation of gold clusters by thiols.
The formation of gold-thiolate nanoparticles via oxidation of gold clusters by thiols is examined in this work. Using the BP86 density functional with a triple ζ basis set, the adsorption of methylthiol onto various gold clusters Aun(Z) (n = 1-8, 12, 13, 20; Z = 0, -1, +1) and Au38(4+) is investigated. The rate-limiting step for the reaction of one thiol with the gold cluster is the dissociatio...
متن کاملNano-scaling law: geometric foundation of thiolated gold nanomolecules.
Thiolated gold nanomolecules show a power correlation between the number of gold atoms and the thiolate ligands with a 2/3 scaling similar to Platonic and Archimedean solids. Nanomolecule stability is influenced by a universal geometric factor that is foundational to its stability through the Euclidean surface rule, in addition to the electronic shell closing factor and staple motif requirements.
متن کاملOn the structure of the thiolated Au15 cluster.
The structure of the Au15-thiolate cluster has been elucidated using a DFT approach, and it is demonstrated to comprise a Au4-tetrahedron core protected solely by the combination of two concatenated staple motifs. The longer motif efficiently wraps the core, and threads the shorter one. The structural assignment is supported by comparison to the powder X-ray diffraction pattern and, via time de...
متن کاملSpectrophotometric Determination of 4-Hydroxy-2-mercapto-6-methylpyrimidine Based on Aggregation of Colloidal Gold Nanoparticles
We report herein the development of a highly sensitive colorimetric method for the detection of 4-hydroxy-2-mercapto-6-methylpyrimidine (MTU) which acts as an anti-thyroid drug utilizing citrate capped gold nanoparticles (Au-NPs). This thiol-containing molecule exhibits intriguing affinity with Au-NPs. The reactivity involves the displacement of the citrate shell by the thiolate shell followed ...
متن کاملInvestigating the structural evolution of thiolate protected gold clusters from first-principles.
Unlike bulk materials, the physicochemical properties of nano-sized metal clusters can be strongly dependent on their atomic structure and size. Over the past two decades, major progress has been made in both the synthesis and characterization of a special class of ligated metal nanoclusters, namely, the thiolate-protected gold clusters with size less than 2 nm. Nevertheless, the determination ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 8 48 شماره
صفحات -
تاریخ انتشار 2016